Shining Dark on Dust

Using Total Lunar Eclipses to expose Dust Accumulation on Apollo Reflectors

Tom Murphy (UCSD)

© Dan Long 2014

APOLLO: one giant leap for LLR

- APOLLO performs lunar laser ranging (LLR) to test the foundations of gravity
 - Is General Relativity (GR) correct?
 - Equivalence Principle violation?
 - Time variation of gravitational strength?
 - Departure from $1/r^2$ force law?
 - Gravitomagnetism (GR effect)
 - Geodetic Precession
- APOLLO gets millimeter range precision
 - GR departures from Newton ~10 m level
- Acronym assures funding by NASA
 - ~50/50 NASA/NSF

Lunar Retroreflector Arrays

Corner cubes

Apollo 14 retroreflector array

Apollo 11 retroreflector array

Apollo 15 retroreflector array

The Reflector Positions

- Three Apollo missions left reflectors
 - Apollo 11: 100-element
 - Apollo 14: 100-element
 - Apollo 15: 300-element
- Two French-built, Soviet-landed reflectors were placed on rovers
 - Luna 17: Lunokhod 1 rover
 - Luna 21: Lunokhod 2 rover
 - similar in size to A11, A14
- Signal loss is huge:
 - ~ ≈10⁻⁸ of photons launched find reflector (atmospheric seeing)
 - $\approx 10^{-8}$ of returned photons find telescope (corner cube diffraction)
 - >10¹⁷ loss considering other optical/detection losses

How Does it Work?

Big Bang Theory: Making it Look Easy

SEC 2014

The Earth-End

B

2.5 meter SDSS

APOLLO's Secret Weapon: Aperture

- The Apache Point Observatory's 3.5 meter telescope
 - Southern NM (Sunspot)
 - 9,200 ft (2800 m) elevation
 - Great "seeing": 1 arcsec
 - Flexibly scheduled, high-class research telescope
 - APOLLO gets 8–10 < 1 hour sessions per lunar month
 - 7-university consortium (UW NMSU, U Chicago, Princeton, Johns Hopkins, Colorado, Virginia)

APOLLO Laser

- Nd:YAG; flashlamp-pumped; mode-locked; cavity-dumped
- Frequency-doubled to 532 nm
 - 57% conversion efficiency
- 90 ps pulse width (FWHM)
- 115 mJ (green) per pulse
 - after double-pass amplifier
 - 20 Hz pulse repetition rate
 - 2.3 Watt average power
- GW peak power!!

•

•

•

- Beam is expanded to 3.5 meter aperture
 - Less of an eye hazard
 - Less damaging to optics

Laser Mounted on Telescope

A Telescope in Reverse

**

Gigantic Laser Pointer

Killer Returns

Apollo 15

2007.11.19

Apollo 11

red curves are theoretical profiles: get convolved with fiducial to make lunar return

- 6624 photons in 5000 shots
- 369,840,578,287.4 ± 0.8 mm
- 4 detections with 10 photons

- 2344 photons in 5000 shots
- 369,817,674,951.1 ± 0.7 mm
- 1 detection with 8 photons

2014.10.25

Not All is Rosy in LLR-Land

16

APOLLO rates on Apollo 15 reflector

SEC 2014

More on the deficit

- APOLLO system sensitivity is not to blame for full-moon deficit
 - background is not impacted

- Early LLR data trucked right through full-moon with no problem
- The deficit began to appear around 1979
- No full-moon ranges from 1985 until 2006, except during eclipse

Past Eclipses, French Observations

- Strong signal during eclipse
 - Apollo 11 (blue) was about as strong as this station saw in decades of ranging: definitely a special night
- Take your pick: late peak; early peak; no peak
- LLR is hard: ups and downs can be acquisition difficulty

What's Wrong?

- The full-moon deficit, together with normal eclipse behavior, gives us the best clues:
 - thermal nature
 - absorbing solar flux
- Most likely: dust
 - Obviously could explain overall deficit (10%)
- Full moon effect then due to solar heating of dust
 - sun comes straight down tube at full moon
 - makes front hotter than vertex of corner cube, leading to divergence of exit beam
 - only takes 4° C (7° F) gradient to introduce $10 \times$ reduction

Modeling CCR Diffraction Patterns

SEC 2014

Exploring Orientation & Thermal Gradients

Eclipse as Light Switch

2010 Dec 21 05:28:00 UT

Dec. 2010: perfect eclipse for North America

If sunlight is to blame, let's shut it off at full moon!

- need to intercede with massive body: move heaven and earth?
- examine response time: is it a thermal effect in corner cubes?

Cartoon of Expectations

Illumination; Thermal Gradient; Return Strength

SEC 2014

Near-zenith at mid eclipse for APOLLO

but variable, high, thin clouds that night

2010 APOLLO Eclipse Results

robust recovery initially, then down, and brief resurgence once light returns

SEC 2014

2014.04.15 Eclipse

Still See Dramatic Effect, but Single-Peak

Reconciliation?

- Thicker set of clouds during 2010 eclipse coincide with dip
 - analysis of opacity suggested this wasn't responsible
- Conditions in 2014 eclipse pristine
 - and signal was acquired well before umbral stage commenced
- Must conclude that single peak is correct
 - cartoon predicting double peak got "lucky!"
 - time constant is longer: thermal coupling to aluminum pallet

What CAN We Say?

- Thermal effect real: solar absorption happening
 - likely dust coating
- Roughly 10 × signal loss over expectations, at all phases
- Factor of 10–15 additional signal loss at full moon
 - recovering to admirably strong levels during both eclipses
 - consistent with thermal gradients in 3–4 K range at full moon
- Putting together: 10 × attenuation plus large gradient
 - suggests dust covering fraction is $f \approx 0.4-0.5\%$
 - double-pass and diffraction result in far-field intensity $(1 f)^4$
 - similar fraction computed from radiative balance to get gradient

Covering Fraction

Summary

- APOLLO is a millimeter-capable lunar ranging station testing gravity
- Strong signal allows LLR operation at full-moon
- Found that reflectors were "sick" near full moon; suspected thermal/solar issue
- Eclipse provides celestial light switch to test idea
- CONFIRMED: definite solar/thermal effect, likely due to dust deposition (signal levels outstanding during eclipse)
- ESTIMATE: dust covering fraction of nearly 50%
 - roughly a mono-layer per century